Evaluation of multiple displacement amplification in a 5 cM STR genome-wide scan

نویسندگان

  • Peter A. Dickson
  • Grant W. Montgomery
  • Anjali Henders
  • Megan J. Campbell
  • Nicholas G. Martin
  • Michael R. James
چکیده

Multiple displacement amplification (MDA) has emerged as a promising new method of whole genome amplification (WGA) with the potential to generate virtually unlimited genome-equivalent DNA from only a small amount of seed DNA. To date, genome-wide high marker density assessments of MDA-DNA have focussed mainly upon suitability for single nucleotide polymorphism (SNP) genotyping applications. Suitability for short tandem repeat (STR) genotyping has not been investigated in great detail, despite their inherent instability during DNA replication, and the obvious challenge that this presents to WGA techniques. Here, we aimed to assess the applicability of MDA in STR genotyping by conducting a genome-wide scan of 768 STR markers for MDAs of 15 high quality genomic DNAs. We found that MDA genotyping call and accuracy rates were only marginally lower than for genomic DNA. Pooling of three replicate MDAs resulted in a small increase in both call rate and genotyping accuracy. We identified 34 STRs (4.4% of total markers) of which five essentially failed with MDA samples, and 29 of which showed elevated genotyping failures/discrepancies in the MDAs. We emphasise the importance of DNA and MDA quality checks, and the use of appropriate controls to identify problematic STR markers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlex whole genome amplified DNA generated from multiple DNA sources.

The promise of whole genome amplification (WGA) is that genomic DNA (gDNA) quantity will not limit molecular genetic analyses. Multiple displacement amplification (MDA) and the OmniPlex PCR-based WGA protocols were evaluated using 4 and 5 ng of input gDNA from 60 gDNA samples from three tissue sources (mouthwash, buffy coat, and lymphoblast). WGA DNA (wgaDNA) yield and genotyping performance we...

متن کامل

Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance

BACKGROUND Whole genome amplification (WGA) promises to eliminate practical molecular genetic analysis limitations associated with genomic DNA (gDNA) quantity. We evaluated the performance of multiple displacement amplification (MDA) WGA using gDNA extracted from lymphoblastoid cell lines (N = 27) with a range of starting gDNA input of 1-200 ng into the WGA reaction. Yield and composition analy...

متن کامل

Molecular genetic analyses for left-sided displacement of the abomasum in German Holstein cattle

A whole-genome scan using an affected paternal half-sib design was utilized to detect quantitative trait loci (QTL) for left-sided displaced abomasum (LDA) in German Holsteins. A total of 360 animals from 14 paternal half-sib families were genotyped, for a total of 306 polymorphic microsatellites. For a whole-genome scan, 221 markers were equally distributed over all 29 bovine autosomes, with a...

متن کامل

Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA.

Whole genome amplification (WGA) procedures such as primer extension preamplification (PEP) or multiple displacement amplification (MDA) have the potential to provide an unlimited source of DNA for large-scale genetic studies. We have performed a quantitative evaluation of PEP and MDA for genotyping single nucleotide polymorphisms (SNPs) using multiplex, four-color fluorescent minisequencing in...

متن کامل

O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis

Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005